Top Publikationen
Gefiltert nach:
Sortierung nach Jahr und AutorInnen
Hogan, A., Cochez, M., Melo, G. de, & Neumaier, S. (2022). Knowledge graphs. Morgan & Claypool Publishers.
Holzinger, A., Kieseberg, P., Tjoa, A. M., & Weippl, E. (2022). 6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022 Vienna, August 23–26, 2022 Proceedings. Springer.
Kovac, F., Eigner, O., Adrowitzer, A., Scholnast, H., & Buchelt, A. (2022). Classification of rain events using directional radio data of commercial microwave links. 2022 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), 1–6.
Nurgazina, J., Felberbauer, T., Asprion, B., & Pinnamaraju, P. (2022). Visualization and clustering for rolling forecast quality verification: A case study in the automotive industry. Procedia Computer Science, 200, 1048–1057.
Slijepcevic, D., Horst, F., Lapuschkin, S., Horsak, B., Raberger, A.-M., Kranzl, A., Samek, W., Breitender, C., Schöllhorn, W., & Zeppelzauer, M. (2022). Explaining Machine Learning Models for Clinical Gait Analysis. ACM Transactions on Computing for Healthcare, 3(2), 14:1-14:27.
Adensamer, A., & Klausner, L. D. (2021). “Part Man, Part Machine, All Cop”: Automation in Policing. Frontiers in Artificial Intelligence, 2021(4).
Adensamer, A., Gsenger, R., & Klausner, L. D. (2021). “Computer Says No”: Algorithmic Decision Support and Organisational Responsibility. Journal of Responsible Technology, 7–8.
Bernard, Jürgen, Hutter, M., Sedlmair, M., Zeppelzauer, Matthias, & Munzner, Tamara. (2021). A Taxonomy of Property Measures to Unify Active Learning and Human-centered Approaches to Data Labeling. ACM Transactions on Interactive Intelligent Systems (TiiS), 11(3–4), 1–42.
Dumphart, B., Slijepčević, D., Unglaube, F., Kranzl, A., Baca, A., Zeppelzauer, M., & Horsak, B. (2021). An automated deep learning-based gait event detection algorithm for various pathologies. Gait & Posture, 90, 50–51.
Eigner, O., Eresheim, S., Kieseberg, P., Klausner, L. D., Pirker, M., Priebe, T., Tjoa, S., Marulli, F., Mercaldo, F., & Priebe, T. (2021). Towards Resilient Artificial Intelligence: Survey and Research Issues. Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience, 536–542.
Hogan, A., Blomqvist, E., Cochez, M., d"Amato, C., de Melo, G., Gutierrez, C., Gayo, J. E. L., Kirrane, S., Neumaier, S., Polleres, A., Navigli, R., Ngomo, A.-C. N., Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., & Zimmermann, A. (2021). Knowledge Graphs. ACM Computing Surveys, 54(4), 1–37.
Holzinger, A., Kieseberg, P., Tjoa, A. M., & Weippl, E. (2021). 5th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2021 Virtual Event, August 17–20, 2021 Proceedings. Springer.
Holzinger, A., Weippl, E., Tjoa, A. M., & Kieseberg, P. (2021). Digital Transformation for Sustainable Development Goals (SDGs) - A Security, Safety and Privacy Perspective on AI. In A. Holzinger, P. Kieseberg, A. M. Tjoa, & E. Weippl (Eds.), Machine Learning and Knowledge Extraction (pp. 1–20). Springer International Publishing.
Kieseberg, P., Schrittwieser, S., & Weippl, E. (2021). Secure Internal Data Markets. Future Internet, 13(8).
Krondorfer, P., Slijepčević, D., Unglaube, F., Kranzl, A., Breiteneder, C., Zeppelzauer, M., & Horsak, B. (2021). Deep learning-based similarity retrieval in clinical 3D gait analysis. Gait & Posture, 90, 127–128.
Pellegrini, T., Beraha, D., Gladyshev, M., de Grosbois, J., Hakopov, Z., Jehadeesan, R., Markov, A., Marmonti, E., & Nenadic, G. (2021). Exploring Semantic Technologies and Their Application to Nuclear Knowledge Management. INTERNATIONAL ATOMIC ENERGY AGENCY.
Slijepčević, D., Henzl, M., Klausner, L. D., Dam, T., Kieseberg, P., & Zeppelzauer, M. (2021). k‑Anonymity in Practice: How Generalisation and Suppression Affect Machine Learning Classifiers. Computers & Security, 111, 19.
Stöger, K., Schneeberger, D., Kieseberg, P., & Holzinger, A. (2021). Legal aspects of data cleansing in medical AI. Computer Law & Security Review, 42.
Zielinski, B., Lipinski, M., Juda, M., Zeppelzauer, Matthias, & Dlotko, Pawel. (2021). Persistence Codebooks for Topological Data Analysis. Journal of Artificial Intelligence Review, 54, 1969–2009.
Holzinger, A., Kieseberg, P., Tjoa, A. M., & Weippl, E. (2020). Machine Learning and Knowledge Extraction: Fourth IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 International Cross-Domain Conference, CD-MAKE 2020. Springer.